Skip to content

21

约 686 字大约 2 分钟

2025-02-28

problem 1

求解 dydx=ylnx\frac{d y}{d x}=y \ln x

solution

将方程中的变量 yyxx 分离开来:

1ydy=lnxdx\frac{1}{y} dy = \ln x \, dx

两边积分,有:

lny=xlnxx+C\ln |y| = x \ln x - x + C

此即为通解,其中 CC 为任意常数。 另有解

y=0.y=0.

problem 2

求解 tanydxcotxdy=0\tan y d x-\cot x d y=0

solution

siny,cosx\sin y,\cos x 均不为零,则 d(cosxsiny)=sinxsinydx+cosxcosydy=0,\mathrm{d}(\cos x \sin y)=-\sin{x}\sin{y}\mathrm{d}x+\cos x \cos y \mathrm{d}y=0, 故其通解为 cosxsiny=C,\cos x \sin y=C, 其中 CC 为任意常数。 若 siny=0\sin y =0cosx=0,\cos x=0, 则解为 y=kπy=k \pix=π2+kπ,kZ.x=\frac{\pi}{2}+k \pi,k \in \mathbb{Z}.

problem 3

求解初值问题 {(x21)y+2xy2=0,y(0)=1\begin{cases}(x^2-1) y'+2 x y^2=0, \\ y(0)=1\end{cases}

solution

y0,x210y \neq 0, x^2-1 \neq 0 时,方程变为

dyy2=2x dx(x21)-\frac{\mathrm{d} y}{y^2}=\frac{2 x \mathrm{~d} x}{(x^2-1)}

积分得

1y=lnx21+C\frac{1}{y}=\ln |x^2-1|+C

在通解中代入初值 y(0)=1y(0)=1 ,有 C=1C=1 .所求特解为 y=1lnx21+1y= \frac{1}{\ln |x^2-1|+1}.

problem 4

求解 (2x4y+6)dx+(x+y3)dy=0(2 x-4 y+6) d x+(x+y-3) d y=0

solution

作变换

x=ξ+1,y=η+2x=\xi+1, \quad y=\eta+2

dη dξ=4η2ξξ+η\frac{\mathrm{d} \eta}{\mathrm{~d} \xi}=\frac{4 \eta-2 \xi}{\xi+\eta}

再作变换 u=ηξu=\frac{\eta}{\xi} ,有

u+ξdudξ=4u21+uu+\xi \frac{d u}{d \xi}=\frac{4 u-2}{1+u}

变量分离,有

u+1(u1)(u2)du=dξξ(u1,2)\frac{u+1}{(u-1)(u-2)} d u=-\frac{d \xi}{\xi} \quad(u \neq 1,2)

两边积分,有

(u2)(u2u1)2ξ=C(u-2)\left(\frac{u-2}{u-1}\right)^2 \xi=C

回代,得原方程通解

(y2x)3=C(yx1)2(y-2 x)^3=C(y-x-1)^2

u=1,u=2u=1, u=2 ,即 y=x+1,y=2x,y=x+1, y=2 x, 则还有解 y=x+1.y=x+1.

problem 5

求解 ylnydx+(xlny)dy=0y \ln y d x+(x-\ln y) d y=0

solution

将方程变形为

dx dy+xylny=1y\frac{\mathrm{d} x}{\mathrm{~d} y}+\frac{x}{y \ln y}=\frac{1}{y}

所求通解为

x=e1ylnydy[1ye1ylnydy dy+C]=1lny[lnyy dy+C]=lny2+Clny\begin{aligned} x & =\mathrm{e}^{-\int \frac{1}{y \ln y} d y}\left[\int \frac{1}{y} \mathrm{e}^{\int \frac{1}{y \ln y} d y} \mathrm{~d} y+C\right] \\ & =\frac{1}{\ln y}\left[\int \frac{\ln y}{y} \mathrm{~d} y+C\right]=\frac{\ln y}{2}+\frac{C}{\ln y} \end{aligned}

另有解

y=1.y=1.

problem 6

求解 xdy(y+xy3(1+lnx))dx=0x d y-\left(y+x y^3(1+\ln x)\right) d x=0

solution

z=y2z=y^{-2} ,得

d(y2)dx+2xy2=2(1+lnx)\begin{aligned} \frac{\mathrm{d}(y^{-2})}{\mathrm{d} x}+\frac{2}{x} y^{-2} & =-2(1+\ln x) \end{aligned}

y2=1x2[C23x3lnx49x3]\begin{aligned} y^{-2} & =\frac{1}{x^2}\left[C-\frac{2}{3} x^3 \ln x-\frac{4}{9} x^3\right] \end{aligned}

所求通解为

1y2=Cx223xlnx49x\frac{1}{y^2}=\frac{C}{x^2}-\frac{2}{3} x \ln x-\frac{4}{9} x

problem 7

求解 (lny+2x1)dy2ydx=0(\ln y+2 x-1) d y-2 y d x=0

solution

化为一阶线性微分方程

dydx1yx=(lny1)2y\frac{d y}{d x}-\frac{1}{y} x=\frac{(\ln y-1)}{2 y}

解得:

x=lny2+Cy\begin{aligned} x & =-\frac{\ln y}{2}+C y \end{aligned}

贡献者: Ming Wei